Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
Nonlinear Dyn ; : 1-10, 2022 Sep 25.
Article in English | MEDLINE | ID: covidwho-2245956

ABSTRACT

The long duration of the COVID-19 pandemic allowed for multiple bursts in the infection and death rates, the so-called epidemic waves. This complex behavior is no longer tractable by simple compartmental model and requires more sophisticated mathematical techniques for analyzing epidemic data and generating reliable forecasts. In this work, we propose a framework for analyzing complex dynamical systems by dividing the data in consecutive time-windows to be separately analyzed. We fit parameters for each time-window through an approximate Bayesian computation (ABC) algorithm, and the posterior distribution of parameters obtained for one window is used as the prior distribution for the next window. This Bayesian learning approach is tested with data on COVID-19 cases in multiple countries and is shown to improve ABC performance and to produce good short-term forecasting. Supplementary Information: The online version contains supplementary material available at 10.1007/s11071-022-07865-x.

2.
J R Soc Interface ; 19(190): 20220275, 2022 05.
Article in English | MEDLINE | ID: covidwho-1861023

ABSTRACT

In Brazil, vaccination has always cut across party political and ideological lines, which has delayed its start and brought the whole process into disrepute. Such divergences put the immunization of the population in the background and create additional hurdles beyond the pandemic, mistrust and scepticism over vaccines. We conduct a mathematical modelling study to analyse the impacts of late vaccination along with slowly increasing coverage, as well as how harmful it would be if part of the population refused to get vaccinated or missed the second dose. We analyse data from confirmed cases, deaths and vaccination in the state of Rio de Janeiro in the period between 10 March 2020 and 27 October 2021. We estimate that if the start of vaccination had been 30 days earlier, combined with efforts to drive vaccination rates up, about 31 657 deaths could have been avoided. In addition, the slow pace of vaccination and the low demand for the second dose could cause a resurgence of cases as early as 2022. Even when reaching the expected vaccination coverage for the first dose, it is still challenging to increase adherence to the second dose and maintain a high vaccination rate to avoid new outbreaks.


Subject(s)
COVID-19 , Vaccines , Brazil/epidemiology , COVID-19/epidemiology , COVID-19/prevention & control , Humans , Pandemics/prevention & control , Vaccination
3.
Nonlinear Dyn ; 107(3): 1919-1936, 2022.
Article in English | MEDLINE | ID: covidwho-1813770

ABSTRACT

Reliable data are essential to obtain adequate simulations for forecasting the dynamics of epidemics. In this context, several political, economic, and social factors may cause inconsistencies in the reported data, which reflect the capacity for realistic simulations and predictions. In the case of COVID-19, for example, such uncertainties are mainly motivated by large-scale underreporting of cases due to reduced testing capacity in some locations. In order to mitigate the effects of noise in the data used to estimate parameters of models, we propose strategies capable of improving the ability to predict the spread of the diseases. Using a compartmental model in a COVID-19 study case, we show that the regularization of data by means of Gaussian process regression can reduce the variability of successive forecasts, improving predictive ability. We also present the advantages of adopting parameters of compartmental models that vary over time, in detriment to the usual approach with constant values.

4.
Nonlinear Dynamics ; : 1-18, 2022.
Article in English | EuropePMC | ID: covidwho-1610153

ABSTRACT

Reliable data are essential to obtain adequate simulations for forecasting the dynamics of epidemics. In this context, several political, economic, and social factors may cause inconsistencies in the reported data, which reflect the capacity for realistic simulations and predictions. In the case of COVID-19, for example, such uncertainties are mainly motivated by large-scale underreporting of cases due to reduced testing capacity in some locations. In order to mitigate the effects of noise in the data used to estimate parameters of models, we propose strategies capable of improving the ability to predict the spread of the diseases. Using a compartmental model in a COVID-19 study case, we show that the regularization of data by means of Gaussian process regression can reduce the variability of successive forecasts, improving predictive ability. We also present the advantages of adopting parameters of compartmental models that vary over time, in detriment to the usual approach with constant values.

SELECTION OF CITATIONS
SEARCH DETAIL